Sulfur Recovery & Tail Gas Treating Analyzers
The Normal, the Abnormal & the Paranormal

Randy Hauer
AMETEK Process Instruments

Abdulla Husain Al Hammadi,
Mohamed Ibrahim Nijam Deen,
Gasco Habshan 5 Plant Division

Zaheer Juddy
AIMS

13 October 2016
Analyzer Tags in the SRU/TGTU Process

13 October 2016
Part 1 / BTEX Analysis for Control of Co-firing

- BTEX (benzene, toluene, ethylbenzene, xylene)
 - >700 ppm in the amine acid gas (AAG)
 - >50 ppm leaving the reaction furnace
 - Results “carsul” formation and severe deactivation of catalyst

- Co-firing of natural gas to maintain reaction furnace temperatures > 1,050-1,080 C destructs the BTEX
 - Practical but has a considerable operating cost if continual

- BTEX values in the AAG >700 ppm are mostly short lived
 - Background values vary according to process conditions

- Xylene is the worst contributor to catalyst deactivation
IPS-4 Full Spectrum analyzer
- Developed for Superclaus “ABC+ feed forward control
- Combination of UV & IR
 • IR for total hydrocarbon for feed forward control
 • UV to speciate the BTEX

Heated Acid Gas (HAG) Probe
- Provide for it at FEED phase
- Install at EPC phase, savings is huge
- Future analyzer is the simple part
Design Case Gasco Habshan 5 Plant

- FEED had nominal 0.1% (1,000 ppm) BTEX in base case
 - On-line analysis was not provided for
 - Soot and carsul deposits on the catalyst were evident
 - Minimum reaction furnace temp of 1,050 was established utilizing co-firing of natural gas

- After initial quantification of the cost of co-firing an on-line BTEX / total HC analyzer was considered important enough to implement immediately

- Gasco, AIMS & Ametek worked closely and quickly to install the analyzer
Fourteen Day Trend of BTEX
Transient BTEX Spike to 929 ppm on Aug 11

Graph showing BTEX concentration levels:
- 800 ppm
- 600 ppm
- 400 ppm

The graph depicts a spike in BTEX concentration to 929 ppm on Aug 11.
ACID GAS REPORT

Report Date: 16/01/2016

<table>
<thead>
<tr>
<th>Component</th>
<th>Method</th>
<th>Units / Time (Hrs)</th>
<th>Sample ID</th>
<th>Sample Point</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>90432</td>
<td>553-SC-7012</td>
</tr>
<tr>
<td>Component</td>
<td>Method</td>
<td>Units / Time (Hrs)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>ASTM D1945 & D5580</td>
<td>mol%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td></td>
<td>0.4629</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td></td>
<td>0.0382</td>
<td></td>
<td></td>
</tr>
<tr>
<td>iC4</td>
<td></td>
<td>0.0280</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nC4</td>
<td></td>
<td>0.0100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>iC5</td>
<td></td>
<td>0.0256</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nC5</td>
<td></td>
<td>0.0114</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C6 Hydrocarbons</td>
<td></td>
<td>0.0181</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td></td>
<td>0.0691</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C7 Hydrocarbons</td>
<td></td>
<td>0.0470</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td></td>
<td>0.0375</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C8 Hydrocarbons</td>
<td></td>
<td>0.0277</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethyl-Benzene</td>
<td></td>
<td>0.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m,p-Xylenes</td>
<td></td>
<td>0.0020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>o-Xylene</td>
<td></td>
<td>0.0066</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total BTEX</td>
<td></td>
<td>0.0885</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Hydrocarbons</td>
<td></td>
<td>0.7893</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2S</td>
<td></td>
<td>47.6292</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2</td>
<td></td>
<td>0.2592</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td></td>
<td>51.3223</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>100.0000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Trends for BTEX, Toluene, Xylene (H₂S, CO₂, THC)

A Green: BTEX
B Blue: Toluene
C Yellow: Xylene
D Purple: H₂S
E Red: CO₂
F White: HC

800 ppm
600 ppm
400 ppm
Summary & Conclusions On-Line BTEX Analyzer

- On-line analysis of BTEX for control of co-firing is practical
 - Close relationship & onsite support from vendor is essential

- Quantifiable Benefits
 - $1.75 million/yr fuel savings, 12 wk payback based on this alone
 - Increased catalyst life
 - Consequential CO_2 reduction of 120,000 tons/yr

- Front End Engineering Design must provide for the sample connection in a proper location fitted with the HAG probe

- If co-firing is standard operating practice, install an analyzer
Part 2 / The Normal, Abnormal & Paranormal

- On-line process analyzers are “trusted” when providing predictable results and called into question when not.

- Tail gas analyzers exhibit a characteristic $\text{H}_2\text{S}/\text{SO}_2$ signature; any deviation is suspect and called into question.

- Other on-line analytical data runs very static and near zero; any deviation from zero is suspect and called into question.

- SO$_2$ breakthrough to the TGTU can be prevented, mitigated with a feed forward (total HC, H$_2$S) analyzer.

- Five case studies illustrating this……
SRU at Turndown (slow response vs plugging)

5:1 turndown
N-Gas Assist

10:1 turndown
N-Gas Assist

Plugging
SRU TAIL GAS ANALYSIS (Model 900 Air Demand Analyzer)
COS & CS₂ in SRU Tail Gas (Refinery)
Field Data / HC Process Upset

- H₂S swings from 83 to 87%
- THC = 0.02%
- THC = 0.25%
- 12 fold increase in THC from 0.02 to 0.25%
- lasting ~3 minutes
Effect of SO₂ Excursions on TGTU H₂

![Image of a metal component with various data points and labels]
TGTU (COS & H₂S) Steady State & Upset
Summary & Conclusions – Abnormal Results

- It is very rare for an analyzer to give a “false positive” result
 - *In particular* H_2S/SO_2 *in tail gas, when it is moving its working*

- Train operators on the chemistry & physics of SRU-TGTU
 - *There is generally a sound explanation, resolve it, build confidence*

- Instrument data sheets analyzer at the FEED stage
 - *Do not specify a range 2 orders of magnitude between the primary and secondary functions of a multicomponent analyzer*
 - *Consider the upset condition. Do not just set the full scale range at some random multiple of the normal value*
 - *Consult with the vendor, have a staff process analyzer specialist*

- Consider the utility of a feed gas analyzer to prevent SO_2 breakthrough to the TGTU