Corrosion Due to Elemental Sulfur in Sour Gas Production and Claus Sulfur Recovery Systems

Peter D. Clark
Director of Research, Alberta Sulphur Research Ltd.
and Professor Emeritus of Chemistry, University of Calgary

and

N. I. Dowling
Senior Research Scientist, Alberta Sulphur Research Ltd.
Contact: pdclark@ucalgary.ca

MESPON 2016
Abu Dhabi, United Arab Emirates, October 9 – 11, 2016
Wet Sulfur Contact Corrosion of Carbon Steel
The Safety Moment: Iron Sulfide and Fire

\[
\text{Fe} + S_8 + H_2O \rightarrow \text{FeS} \\
\text{FeS} + O_2 (\text{Air}) \rightarrow \text{Fe}_2\text{O}_3 + \text{SO}_2 + \text{Energy} \ (\Delta H = -1,226 \text{ kJ})
\]

The \(\text{Fe}_2\text{O}_3 \) becomes red hot igniting any flammable material (sulfur)

Result: Fires inside the Claus plant (catalyst beds), sulfur pits, tanks, sulfur forming plants and more
Electrochemical Mechanism of Sulfur Corrosion

Anodic: \[xFe \rightarrow xFe^{2+} + 2xe^- \]

Cathodic: \[S_x + 2xe^- \xrightarrow{[FeS]} xS^{2-} \] “autocatalytic”

Overall Corrosion Reaction: \[xFe + S_x \xrightarrow{[FeS]} \text{iron sulfide (‘mackinawite’)} \]

FeS is pyrophoric when dry and finely divided

S-deficient FeS\(_{(1-x)}\) “non-stoichiometric”
Mechanistic Overview of Steel / Sulphur Corrosion

Non-stoichiometric e- conducting FeS layer
Effect of Moisture and Steel / Sulfur Contact

- Contact and moisture are essential for corrosion -
Effect of Temperature on The Rate of Wet Sulfur Contact Corrosion

- > 20°C most of the time
- PANAMA CANAL
- TRANS-ATLANTIC
- TRANS-PACIFIC
Partial Oxidation of FeS and Formation of Sulfuric Acid

FeS + O₂ (Air) → Partial oxidation → Fe₂(SO₄)₃

Fe₂(SO₄)₃ + H₂O → 2 Fe³⁺ [6 H₂O] + 3 SO₄²⁻ [6 H₂O]

Solvolysis

Fe³⁺ (H₂O)₆ → Fe²⁺ (H₂O)₅ OH + [H⁺]

- Iron sulfate forms acidic solutions (pH ≈ 1-2) which corrode steel
Two Examples of Sulfur Deposition in Sour Gas Production Facilities

S₈ Deposition within a Sour Gas Flow Line

S₈ Deposition in a Gas Plant Inlet Separator

+ Photograph courtesy of John Morgan, John M. Campbell & Company

* Photograph courtesy of Mark Townsend, Burlington Resources
Sulfur Deposition Arising from Oxidation of ppm Level H₂S

2. Courtesy of PG&E, Technological and Ecological Services (TES), San Ramon, California

Elemental sulfur confirmed by SEM/EDX analysis
In Situ Formation of Sulfur in Sour Gas Equipment

- The protective FeS coating becomes a catalytic layer

- The reaction is fast at high P; the amount of sulfur (H₂O) formed depends on amount of O₂ ingress
Sulfur is formed at FeS layer in the contactor and then transported around the amine loop.

Degradation occurs in the regenerator; ionic species enhance corrosion.

Sulfur is formed at FeS layer in the contactor and then transported around the amine loop.

Degradation occurs in the regenerator; ionic species enhance corrosion.
“Combustion” of Steel with Sulfur in the Claus Furnace

- Acid gas
- Air
- Ceramic brick
- Process gas
- Brick failure
- S_8

Chemical reactions:

\[
\begin{align*}
\text{Fe} + S_2 &\rightarrow \text{FeS}_2 \\
H_2S &\leftrightarrow H_2 + \frac{1}{2}S_2 \\
\text{Fe} + H_2S &\rightarrow H_2 + \text{FeS} \quad \frac{1}{2}S_2 \rightarrow \text{FeS}_2
\end{align*}
\]

- O_2 is very rapidly consumed by H_2S in the flame
- Steel is oxidized by sulfur forming a mixture of FeS and FeS$_2$
The alumina ferrule is chemically inert to all species.

Steel (Fe) is relatively inert to sulfur and other species < 400°C.
The Importance of Purging Sulfur From a Claus Unit During Shutdowns

- Ceramic brick and catalyst retains sulfur after unit shut down
- Conditions must be maintained to prevent condensation of sulfur in places other than the condensers
Corrosion in Off-Gas Line Below Water Dew Point

- Inadequate heating at line support allows water condensation
- Rapid Fe/S corrosion: \(\text{Fe} + \frac{1}{8} \text{S}_8 \xrightarrow{\text{H}_2\text{O}(l)} \text{FeS} \)
- Aqua Claus reaction: \(2 \text{H}_2\text{S} + \text{SO}_2 \xrightarrow{\text{H}_2\text{O}(l)} [\text{H}_2\text{S}_x\text{O}_y] \xleftrightarrow{\text{H}_2\text{O}(l)} \frac{3}{8} \text{S}_8 + 2 \text{H}_2\text{O} \)
- Highly acidic aqueous solution is formed
Field Pictures of Corroded Claus Tail Gas Line

Pictures provided to ASRL by:

CSI
CONTROLS SOUTHEAST, INC.

AMETEK
THERMAL PROCESS MANAGEMENT
Mechanisms for Deterioration of Concrete in Sulfur Pits

- Migration of H_2S, SO_2, O_2, H_2O and $\text{S} \,(\text{vap})$ into internal pore structure of the concrete followed by chemical reactions.

$\text{H}_2\text{S} + \text{S}_8 \overset{T \, ^\circ\text{C} = 90\rightarrow130}{\rightleftharpoons} \text{H}_2\text{S}_x$

AIR

S_8

Liq S_8

$\text{Liquid S}_8 \, 130^\circ\text{C}$
Formation of Sulfur Inside the Concrete

Detailed Chemistry

\[
H_2S + O_2 \xrightarrow{\text{Concrete pore structure}} SO_2 + H_2O
\]

\[
\frac{1}{8} S_8(\text{vap}) + \frac{1}{2} O_2 \rightarrow SO_2
\]

\[
2H_2S + SO_2 \xleftrightarrow{\text{Claus chemistry intermediates}} \frac{3}{8} S_8 + H_2O
\]

\[
\text{“CaO”} \rightarrow \text{CaSO}_4, \text{CaS}_2\text{O}_3
\]

Lower density, higher volume unconsolidated products.
Secondary Corrosion Processes at Concrete Pit Reinforcing Steel

Secondary Corrosion

- $\text{Fe} + \text{H}_2\text{SO}_4 \rightarrow \text{FeSO}_4 + \text{H}_2$
- $\text{CaO} + \text{H}_2\text{SO}_4 \rightarrow \text{CaSO}_4 + \text{H}_2\text{O}$

Enhanced Sulfur Formation at Steel

- $2\text{H}_2\text{S} + \text{SO}_2 \xrightarrow{\text{Fe}_2\text{O}_3} \frac{3}{8}\text{S}_8 + 2\text{H}_2\text{O}$
- $\text{H}_2\text{S} + \frac{1}{2}\text{O}_2 \xrightarrow{\text{Fe}_2\text{O}_3} \frac{1}{8}\text{S}_8 + \text{H}_2\text{O}$
Primary Corrosion in Sulfur Tanks – Air Drafted Systems

- Poor roof insulation (or poor heating) may result in inner roof temperature of < 100°C

Consequences

- S₈ solid deposition and water / H₂SₓOᵧ condensation (from SO₂ / H₂O)
- Fe / S₈ corrosion
 \[\text{Fe} + \frac{1}{8} \text{S₈} \xrightarrow{\text{H₂O or H₂SₓOᵧ}} \text{FeS} \]
- Acid corrosion
 \[2 \text{Fe} + \text{H₂SₓOᵧ} \rightarrow 2 \text{Fe SₓOᵧ} + \text{H}_2 \]
Secondary Corrosion on Sulfur Tank Roofs – Air Drafted Tanks

- Without roof heating, T may fall to < 100°C, allowing H₂O or H₂SₓOᵧ condensation.
- Partial oxidation of FeS may reform S₈ at surface.
- Corrosion at “cool” roof surface may result from condensed acids (H₂SₓOᵧ), sulfur deposited or formed by chemical reaction.
Rupture of Steam Coils in Sulfur Tanks

Steam Coil Corrosion

Fe + H$_2$S \rightarrow FeS + H$_2$

S$_8$ (H$_2$S) \rightarrow FeS

FeS \rightarrow Mechanical erosion
"Clean surface"

Steaming reaction:

Fe + H$_2$S \rightarrow FeS + H$_2$

Mechanical erosion of FeS layer leads to thinning of carbon steel coils and eventual rupture.

Diagram:
- Air enters the system.
- Steam coil with temperature $\sim 140^\circ$C.
- Condensate/steam exits.
- S$_8$ (H$_2$S) inlet.
- Air/SO$_2$ (H$_2$S) outlet.
Shipping Sulfur By Rail

Steel Box
- Polymer coating to prevent iron-sulfur corrosion
- Keep sulfur dry by adding a cover or roof

Aluminum Box [Don’t do it!]
- Aluminum will melt if S_8 catches fire
- Al/S_8 react explosively at T of burning sulfur to form Al_2S_3
- Al_2S_3 reacts with water producing H_2S
 \[
 \text{Al}_2\text{S}_3 + 3 \text{H}_2\text{O} \rightarrow \text{Al}_2\text{O}_3 + 3 \text{H}_2\text{S}
 \]
Corrosion and Acidity Generation in a Ship Hold
- a Potentially Deadly Combination -

Corrosion: FeS / Sulfur layer may become H₂S saturated > 1000 ppmv.

FeS + H₂SO₄ → FeSO₄ + H₂S

denser than air — remains in the bottom of the hold.
Sulfur Loading to Limewashed Hold

31/8/2002
Development of Zinc-modified Limewash

Chemistry:

$$\text{Ca(OH)}_2 + \text{ZnSO}_4 \rightarrow \text{Zn(OH)}_2 + \text{CaSO}_4$$

net reaction

$pH = 12.4$

Advantage:

$$\text{Zn(OH)}_2 + 2\text{H}^+ \rightarrow \text{Zn}^{2+} + 2\text{H}_2\text{O}$$

acidity build-up in cargo

'soluble'

• SUCCESSFULLY FIELD TESTED IN SHIP TRIAL

Mitigation of Corrosion by Zn$^{2+}$:

$$\text{Fe} + \frac{1}{8}\text{S}_8 \rightarrow \text{FeS}$$

$$\text{Zn (OH)}_2 + \text{FeS} \rightarrow \text{ZnS} + \text{Fe (OH)}_2$$

• ZnS is a perfect insulator stopping e-transfer at iron surface
Effect of Soluble Zn$^{2+}$ on Wet Sulfur Corrosion

solution phase addition of Zn$^{2+}$

Inhibition works by in-situ formation of insoluble ZnS barrier at steel / S contact area

$$\text{Zn}^{2+} + \text{S}^{2-} \rightarrow \text{ZnS} \quad \text{(stoichiometric)}$$

- pH 2
- [SO$_4^{2-}$] = 0.01 M
- soluble Zn$^{2+}$ inhibits S corrosion at concentrations even as low as 1×10^{-2} M
ASRL Member Companies 2016 - 2017

Aecom Technology Corporation
Air Liquide Global E&C Solutions / Lurgi
Ametek Process & Analytical Instruments/Controls Southeast
AXENS
BASF Catalysts LLC
Bechtel Corporation
Black & Veatch Corporation
BP
Brimstone STS Ltd.
Canadian Energy Services/PureChem Services
ConocoPhillips Company
CB&I
Chevron Energy Technology Company
Denbury Resources Inc.
Devco
Duiker CE
E.I. du Pont Canada Company / MECS Inc.
Enersul Inc.
Euro Support BV
ExxonMobil Upstream Research Company
Flint Hills Resources
Fluor Corporation / GAA
HEC Technologies
Hexion Inc.
Husky Energy Inc.
Industrial Ceramics Limited
IPAC Chemicals Limited

Jacobs Canada Inc. / Jacobs Nederland B.V.
KT – Kinetics Technology S.p.A.
Linde Gas and Engineering (BOC)
Lubrizol Canada Ltd.
Nova Chemicals
OMV Exploration and Production GmbH
Optimized Gas Treating, Inc.
Ortloff Engineers, Ltd.
Oxbow Sulphur Canada ULC. (former ICEC)
Petro China Southwest Oil and Gas Field Company/RINGT
Phillips 66 Company
Porocel Industries, LLC
Porter McGuffie, Inc.
Prosernat
Riverland Industries Ltd.
Secure Energy Services
Shell Canada Energy
SiRTEC Nigi S.p.A.
Sulfur Recovery Engineering (SRE)
Sulphur Experts Inc.
TECHNIP
The Petroleum Institute / Abu Dhabi National Oil Company (ADNOC)
Total S.A.
UniverSUL Consulting
WorleyParsons